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Abstract 

This paper presents a survey of the present theoretical understanding based on advanced 

analytical and numerical studies of collective processes and beam-plasma interactions in intense 

heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion 

fusion. The topics include: discussion of the conditions for quiescent beam propagation over long 

distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel 

instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift 

compression and transverse compression regions, collective processes associated with the 

interaction of the intense ion beam with a charge-neutralizing background plasma are described, 

including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic 

Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The 

effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. 

Operating regimes are identified where the possible deleterious effects of collective processes on 

beam quality are minimized.  

 

I. INTRODUCTION 

 This paper presents a survey of the present theoretical understanding based on advanced 

analytical and numerical studies of collective processes and beam-plasma interactions in intense 

heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion 



 

 

fusion [1-7]. A complete description of collective processes in intense charged particle beams is 

provided by the nonlinear Vlasov-Maxwell equations [8-10] for the self-consistent evolution of 

the beam distribution function, ( )tfb ,,px , and the average electric and magnetic fields ( )t,xE  

and ( )t,xB . The effects of finite geometry and intense self-fields often make it difficult to obtain 

detailed predictions of beam equilibrium, stability and transport properties based on the Vlasov-

Maxwel equations. Nonetheless, often with the aid of advanced numerical simulations, there has 

been considerable theoretical progress in applying the Vlasov-Maxwell equations to investigate 

the detailed equilibrium and stability properties of intense charged particle beams [11-80]. These 

theoretical studies include a wide variety of collective interatction processes ranging from the 

electrostatic Harris instability [32-42] and electromagnetic Weibel instability [39,43-48] driven 

by large temperature anisotropy with 
bb
TT ||>>!  in a one-component nonneutral beam, to wall-

impedance-driven collective instabilities [49-51], to the resistive hose instability [52-58], to the 

dipole-mode two-stream (electron cloud) instability for an intense ion beam propagating through 

a partially neutralizing electron background [59-71], to the collective processes associated with 

the interaction of the intense ion beam with a charge-neutralizing background plasma [72-77], 

including the electrostatic electron-ion two-stream instability and the multispecies 

electromagnetic Weibel instability [78-82], and collective excitations in the presence of a 

solenoidal magnetic field [3,80], to the development and application of a nonlinear stability 

theorem in the smooth-focusing approximation [8,23,24].  

 The present survey of collective processes and beam-plasma interactions affecting intense 

ion beam propagation is necessarily brief. In the acceleration and beam transport regions, the 

topics covered in Sec. II include discussion of the sufficient condition for quiescent (stable) 

beam propagation over long distances; and the electrostatic Harris-type instability and the 

electromagnetic Weibel-type instability in strongly anisotropic, one-component nonneutral 

beams. In Sec. III, collective processes associated with the interaction of an intense ion beam 

pulse with a large-volume charge-neutralizing background plasma are described. To achieve the 

high focal spot intensities necessary for high energy density physics and heavy ion fusion 

applications, compressing the beam longitudinally and transversely in the presence of a dense 

charge-neutralizing background plasma has many attractive features [1-7], particularly because 

the plasma electrons eliminate (or significantly reduce) the large, defocusing space-charge force 

of the ion beam pulse. The collective beam-plasma interaction processes summarized in Sec. III 



 

 

include: the electrostatic electron-ion two-stream instability; the multispecies electromagnetic 

Weibel instability; dynamic stabilization of the two-stream instability during longitudinal drift 

compression; and the effects of solenoidal magnetic field on collective beam-plasma instabilities. 

 In the accelerator and transport regions, the analysis in this paper assumes a long ion 

charge bunch (bunch length 
b
l  >> bunch radius 

b
r ) with directed axial kinetic energy 

! 

"
b
#1( )mb

c
2 propagating in the z direction through a perfectly conducting cylindrical pipe with 

constant radius 
w
r . The analysis is carried out in the smooth-focusing approximation where the 

applied transverse focusing force is modeled by 
  

! 

Ffoc = "# bmb$ f

2
x% . Here, 

! 

"
b

= 1#$
b

2( )
#1 2

is the 

relativistic mass factor, cV
bb
!=  is the directed axial velocity of the charged bunch, 

b
m is the ion 

rest mass, constf =! is the single-particle oscillation frequency associated with the applied 

focusing force, and 
  

! 

x" = xex + yey is the transverse displacement of a beam particle from the 

cylinder axis.  Denoting the characteristic number density of beam particles by 
b
n̂  and the 

particle charge by 
b
e , it is convenient to introduce the relativistic plasma frequency pb!̂  defined 

by 

! 

ˆ " pb = 4# ˆ n beb

2 $ bmb( )
1 2

 and the normalized (dimensionless) beam intensity 
b
s  defined by 

222
2ˆ

fbpbbs !"!= [8]. Furthermore, the particle dynamics in the beam frame is assumed to be 

nonrelativistic.  

 It should be noted that one collective instability that is not summarized in the present 

paper is the electron-ion two-stream (electron cloud) instability, which can occur when an 

intense ion beam propagates through an (unwanted) partially-neutralizing component of 

background electrons produced (for example) when energetic beam ions strike the chamber wall 

or ionize background gas atoms. Advanced analytical and numerical simulation studies of this 

instability have previously been reported [64-70,78] and will not be repeated here, except to note 

that the conditions for eliminating or greatly reducing the effects of this instability have been 

identified, e.g., through the introduction of a very modest axial momentum spread in the beam 

ions.  

 As noted earlier, Secs. II and III provide a brief overview of the present understanding of 

several collective instabilities that can develop in intense ion beams and beam-plasma systems. 



 

 

While the summaries are necessarily short, the references in the bibliography for this paper 

provide considerable detailed information.   

 

 

II. ANISOTROPY-DRIVEN COLLECTIVE INSTABILITIES IN ONE- 

     COMPONENT NONNEUTRAL BEAMS 

A. Nonlinear Stability Theorem 

 A very important consequence of the nonlinear Vlasov-Maxwell equations is the 

existence of a stability theorem (a sufficient conditions for stability) for a one-component 

charged particle beams. In particular, for a long, coasting beam in the smooth-focusing 

approximation, the stability theorem states that any equilibrium distribution function ( )Hfb !0  that 

satisfies 

                                                                 ( ) 0
0

!"
"#

#
Hf

H
b                                                             (1) 

is nonlinearly stable to perturbation with arbitrary polarization [8, 23, 24]. In Eq. (1), 

! 

" H = " p r
2 + " p #

2 + " p z
2( ) 2mb + mb

" $ f
2 " r 

2
2 + eb%

0 " r ( )  is the single-particle Hamiltonian in the beam 

frame (primed variables), and ( )r!0"  is determined self-consistently in terms of the beam space-

charge from the Poisson’s equation. It follows from Eq. (1) that any isotropic distribution that is 

a monotonic decreasing function of energy in the beam frame is nonlinearly stable. The validity 

of this theorem has been demonstrated in nonlinear f! simulations [67, 83] for beam propagation 

over thousands of equivalent lattice periods. 

 Equation (1) is a sufficient condition for stability. Therefore, a necessary condition for 

instability is that the beam distribution function has some distinct nonthermal feature such as an 

inverted population in phase space [11-13], or a strongly anisotropic distribution function in the 

beam frame. In electrically neutral plasmas, energy anisotropies are well known to provide the 

free energy to drive the classical electrostatic Harris instability [32] and the electromagnetic 

Weibel instability [43]. The drive mechanism for instability can be either a temperature 

anisotropy or an anisotropy in the relative directed kinetic energy of the plasma components.  

B. Electrostatic Harris Instability for One-Component Beams 



 

 

 In accelerators, strongly anisotropic beam distributions 1|| <<!bb
TT  develop naturally 

during the acceleration of the charge bunch [10], and can provide the free energy to drive both 

the electrostatic Harris instability [32-42] and the electromagnetic Weibel instability [39, 43-48]. 

In this section, we summarize theoretical advances in recent analytical and numerical  studies of  

the Harris instability in intense one-component beams [33-39, 78], assuming electrostatic 

perturbations ( 0!"# E$ and 0!B" ) about an initial anisotropic thermal equilibrium 

distribution (
bb

TT !<|| ) described by the self-consistent Vlasov equilibrium  

                                
  

! 
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0
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ˆ n b
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H#

T#b
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& 
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1

2"mbT||b( )
1 2

exp $
pz

2

2mbT||b
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*                       (2) 

in the beam frame. The ‘primed’ notation for beam-frame variables has been dropped in Eq. (2). 

In Eq. (2), 

! 

H" = p"
2
2mb + 1 2( )mb# f

2
x
2 + y

2( ) + eb$
0
r( )  is the single-particle Hamiltonian for 

the transverse particle motion, 

! 

p" = p#
2 + pr

2( )
1 2

is the transverse particle momentum, 

! 

r = x
2 + y

2( )
1 2

is the radial distance from the beam axis, and ( )r0!  is determined self-

consistently from the equilibrium Poisson equation 
  

! 

r
"1 # #r( ) r#$ 0 #r[ ] = "4%eb d

3
pfb

0
r,

r 
p ( )& . In 

the remainder of Sec. II, it is convenient to introduce the effective depressed betatron frequency 

!"# defined by [37] 

                                                            2
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2

2

pbf

bb

b

rm

T
!!!" #== $

$ ,                                                (3) 

where 
b

T! is the transverse beam temperature, 
b
r  is  the root-mean-square beam radius, 

b
m  is the 

mass of a beam particle, and  

                                                               

! 

" pb
2 =

4#eb
2

mbrb
2

drrnb r( )
0

rw

$                                                    (4)                                                   

is the average beam plasma frequency-squared. The normalized tune depression 
0

!! is defined 

by  

                                                                      
f!

!

"

" #$
=

0

,                                                                (5) 

where constf =!  is the transverse frequency associated with the applied focusing field in the 

smooth-focusing approximation. 



 

 

 Detailed 3D numerical studies of the electrostatic Harris instability in intense one-

component beams have been carried out using the linear eigenmode code bEASt and the 

nonlinear f!  simulations code BEST, and detailed results are presented in [33-39] and [78]. For 

 

present purpose we summarize here some of the most important results. 

 Shown in Fig. 1 are plots of the normalized growth rate 

! 

Im"( )
max

" f versus the 

normalized tune depression 
0

!! obtained for 0|| =!bb
TT and wall radius 

bw
rr 3=  [39]. The 

dashed curve in Fig. 1 has been calculated using the eigenmode code bEASt [37,39] for 

perturbations with azimuthal mode number m=1, which has the largest growth rate. The solid 

curve in Fig. 1 [39] is obtained from the simplified approximate dispersion relation [37]  

                                   

! 

1

1"# 2 /#
0

2
=

1

$ /$ f "# #
0( )
2

+
1

$ /$ f + # #
0( )
2

.                                      (6) 

The m=1 dipole mode is purely growing with 0Re =! . Note from the dashed curve in Fig. 1 

that ( ) 34.0Im
max

!f""  for 

! 

" "
0
# 0.62, and that the Harris instability is completely absent for 

82.0
0
>!! , corresponding to sufficiently small tune shift that 

! 

"# ( ) # 0 = #
0
$# ( ) # 0 < 0.18. 

 The nonlinear f!  code BEST has been used to follow the detailed nonlinear evolution 

and saturation of the Harris instability [33-39]. Shown in Fig. 2 are plots versus 
0

!! of the 

threshold values of the anisotropy 
bb

TT !||  required for complete stabilization of the Harris 

instability [39]. The dashed (solid) curves in Fig. 2 correspond to threshold values of 
bb

TT !|| for 

azimuthal mode numbers m = 0, 1 obtained from the linear eigenmode code bEASt. The squares 

in Fig. 2 correspond to the effective longitudinal beam temperature 2

|||| vmT
bb

!  obtained in 

nonlinear f!  simulations after the instability saturates. As discussed in [37], the Harris 

instability in a one-component beam saturates nonlinearly through a combination of particle 

trapping and quasilinear relaxation.  

Two important conclusions are evident from Figs. 1 and 2. The beam parameters in many 

accelerator systems satisfy 82.0
0
>!! , in which case the Harris instability is expected to be 

completely absent. On the other hand, for ion-beam-driven high energy density physics and 

heavy ion fusion applications, the beam intensity may be sufficiently high that 82.0
0
<!! . In 



 

 

this case, it is evident from Figs. 1 and 2 that the nonlinear dynamics of the Harris instability can 

play an important role in increasing 2

|||| vmT
bb

! , which could have a deleterious effect on 

longitudinal focusing of the beam pulse if 
b
T||  increases to sufficiently large values. This would 

of course require a sufficiently long beam transport region for the instability to grow to a 

substantial level. 

C. Electromagnetic Weibel Instability for One-Component Beams 

The eigenmode code bEASt and nonlinear f! code BEST have been extended to 

incorporate slow-wave transverse electromagnetic perturbations (so called Darwin model), 

thereby allowing for the possibility of a Weibel-type instability occurring in a one-component 

charged particle beam [39,43-45]. Finite-geometry and self-field effects make a precise stability 

analysis based on the linearized Vlasov-Maxwell equations difficult analytically. However, for a 

anisotropic distribution of beam particles [Eq. (2)], assuming 0|| !bT , 1
22
>>

bz
rk , and 

1
222
<<crbpb! , a simplified analytical model gives the simple approximate estimate [39]  

                                                          ( )
c

vthb

f

pb

f

!=
"

"

"

"

2

1Im
max                                                      (7) 

for the maximum growth rate of the Weibel instability. Here, ( ) 212
bb

th

b
mTv !! "  is the transverse 

thermal speed of the beam particles. Making use of Eqs. (3) and (5), it is readily shown that Eq. 

(7) can be expressed in the equivalent form 

                                                      ( )
c

rbf

f

!

"

"

"

"

!

!
21

2

0

2

0

max
1

Im

##
$

%
&&
'

(
)= .                                             (8) 

Note from Eq. (8) that ( )
max

Im! assumes a maximum value of ( ) crbf
2

max
5.0Im !! =  for 

707.021
0

==!!  (see Fig. 3). 

 A typical plot of the normalized maximum growth rate 

! 

Im"( )
max

" f

2
rb c( )  versus 

normalized tune 
0

!! obtained numerically using the linear eigenmode code bEASt is illustrated 

by the solid curve in Fig. 4 [39] for the choice of system parameters 0|| =!bb
TT ,

bw
rr 3= , and 

1<<crbpb! . Quite remarkably, taking 
bw
rr 3=  and comparing Figs. 3 and 4, the value of  

0
!!  

at maximum growth is in very good agreement with the theoretical estimate in Fig. 3, and the 



 

 

corresponding value of the maximum growth rate in Fig. 4 is in agreement within a factor of two. 

The squares shown in Fig. 4 for 182.0
0
<< !!  are the results obtained from simulations carried 

out using the linearized version of the Darwin BEST code for 4

|| 10!" =
bb

TT  and 
bw
rr 3=  [39]. 

Note that the BEST results connect smoothly to the bEASt results in Fig. 4. 

 From Sec. II.B. and Fig. 1 it is clear that the Harris instability can have a substantial 

growth rate provided by 82.0
0
<!!  and 

bb
TT !|| is smaller than the threshold value for 

stabilization shown in Fig. 2. On the other hand, from Figs. 3 and 4, the electromagnetic Weibel 

instability typically has a very small growth rate for 82.0
0
<!! , because 1

222
<<crwf!  and 

1
222
<<crbpb!  in the parameter regimes of practical interest. In addition, the threshold value of 

bb
TT !|| for complete stabilization of the Weibel instability is extremely small, due to finite 

transverse geometry effects, and can be estimated to be [37, 39]  

                                                             

! 

T
||b

th

T"b
# 2 $10

%0.7
& pb

2
rb
2

c
2

<<1.                                              (9) 

As a consequence, the Weibel instability is much less dangerous for intense beams with 

normalized tune 82.0
0
<!! . This is because such intense beams are strongly unstable to the 

electrostatic Harris instability, which saturates at a much larger longitudinal temperature, 

! 

T
||b

th
T"b( )

Weibel

<< T
||b

th
T"b( )

Harris

# 0.11, and has a much larger growth rate, 

! 

"
Weibel

"
Harris

~ v#b
th
c <<1, where 

! 

"
Weibel

 denotes 

! 

Im"( )
max

 for the Weibel instability, and 

! 

"
Harris

 

denotes 

! 

Im"( )
max

 for the Harris instability. 

 In summary, the electromagnetic Weibel instability is likely to be an important instability 

mechanism in one-component charged particle beams with 82.0
0
>!! , but not in intense 

beams with 82.0
0
<!! . 

III. COLLECTIVE INTERACTION PROCESSES FOR INTENSE BEAM  

       PROPAGATION THROUGH BACKGROUND PLASMA  

 The topics covered in Sec. II included a discussion of the sufficient condition for 

quiescent (stable) beam propagation over long distances (Sec. II. A); and the electrostatic Harris-

type instability (Sec. II. B) and the electromagnetic Weibel-type instability (Sec. II.C) in strongly 

anisotropic, one component nonneutral beams. In Sec. III, the collective processes associated 



 

 

with the interaction of an intense ion beam pulse with a large-volume, charge-neutralizing 

background plasma are described. To  achieve the high focal spot intensities necessary for high 

energy density physics and heavy ion fusion applications, compression of the beam 

longitudinally and transversely in the presence of a dense charge-neutralizing background 

plasma has many attractive features [1-7], particularly because the plasma electrons eliminate (or 

significantly reduce) the large, defocusing space-charge force of the ion beam pulse. The 

collective beam-plasma interaction processes summarized in this section include: the 

multispecies electromagnetic Weibel instability (Sec. III.A); the electrostatic electron-ion two-

stream instability (Sec. III.B); the dynamic stabilization of the two-stream instability during 

longitudinal drift compression (Sec. III.C); and the effects of solenoidal magnetic field on 

collective beam-plasma instabilities (Sec. III.D).  

A. Multispecies Weibel Instability 

 The electromagnetic Weibel instability [39, 43–48] was shown in Sec. II.C to be 

relatively ineffective in one-component charged particle beams. The situation can be quite 

different, however, when an intense beam propagates through background plasma [78-84]. In 

this case, the large energy anisotropy associated with the directed kinetic energy of the beam 

particles relative to the background plasma can provide significant free energy to drive the 

transverse electromagnetic Weibel instability, and cause filamentation in the plane perpendicular 

to beam propagation. In this section, we summarize the results of a macroscopic cold-fluid model 

in which an intense ion beam  (j=b) propagates through a background plasma (j=e, i). The 

background plasma is assumed to provide complete charge and current neutralization with [84] 

                                                

! 

n j

0
r( )e j = 0

j= b,e,i

" , and 

! 

n j

0
r( )e j" jc = 0

j= b,e,i

# .                                    (10) 

 In Eq. (10), cV jzj !=  is the average axial velocity of species j (j=b, e, i), and 

! 

" j = 1#$ j

2( )
#1 2

 is the relativistic mass factor. Moreover, current neutralization has been assumed 

since this case gives the largest growth rate for the multispecies Weibel instability. That is, a 

finite azimuthal self-magnetic field ( ) 0
0

!rB"  tends to reduce the growth rate of the Weibel 

instability [9, 47]. Furthermore, the present analysis assumes axisymmetric flute perturbations 

with 0=!! "  and 0=!! z , and electromagnetic field perturbations with components 

zzrr
EE eeE !!! +=  and !!"" eB B= . Note that the field perturbations have mixed polarization 



 

 

with both a longitudinal component ( 0!
r
E" ) and the transverse electromagnetic components 

( 0!"#B and 0!
z
E" ). Finally, it is assumed that the beam-plasma interactions take place in a 

region where there is no applied focusing field ( 0=f! ), and a perfectly conducting cylindrical 

wall is located at radius 
w
rr = . We express ( ) ( )tiEtrE

zz
!"" #= expˆ, , where 0Im >!  

corresponds to instability. Making use of a cold-fluid model that neglects pressure perturbations, 

this leads to the eigenvalue equation [79] 
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 where 

! 

" pj r( ) = 4#n j

0
r( )e j

2 $ jm j[ ]
1 2

 and 

! 

" j = 1#$ j

2( )
#1 2

 . 

 Equation (11) is the desired eigenvalue equation, with the terms proportional to  

( )! = iebj pjj r
,,

22"#  and ( ) 0
,,

2 !" = iebj pjj r#$ providing the free energy to drive the multispecies 

Weibel instability. Equation (11) can be integrated numerically to determine the eigenvalue 
2! and eigenfunction ( )rE

z

ˆ!  for a wide range of beam-plasma density profiles ( )rn
j

0 . Analytical 

solutions are also tractable for the case of flat-top (step-function) density profiles [79]. As a 

general remark, when ( ) 0
,,

22 !" = iebj pjj r#$ and ( ) 0
,,

2 !" = iebj pjj r#$ , Eq. (11) supports both 

stable fast-wave solutions with 0Im =! , 1>!ck" , and unstable slow-wave solutions with 

0Im >! , 1<!ck"  [79].  Here, rk !!" ~  is the characteristic radial wave number of the 

perturbation. Equation (11) also supports plasma oscillation solutions associated with the factor 

proportional to 

! 

" 2 # " pj

2
r( )

j= b,e,i
$[ ]

#1

. 

 As an example that is analytically tractable, we consider the case where the density 

profiles are uniform both inside and outside the beam (Fig. 5) with ( )rn
j

0  specified by  

                                                         ( ) constnrn
i

jj
== ˆ0 ,    j=b,e,i                                               (12) 

for 
b
rr <!0 , and  

                                                          ( ) constnrn
o

jj
== ˆ0 ,    j=e,i                                                 (13) 



 

 

for 
wb
rrr !< .  The transcendental dispersion relation derived from Eq. (11) for step-function 

density profiles has been solved numerically [79, 84] for the complex oscillation frequency !  

for a wide range of system parameters corresponding to (a) plasma-filled waveguide (
wb
rr = ); 

(b) plasma outside the beam-plasma channel ( 0ˆ !
o

j
n , j=e, i, and 

wb
rr < ); and (c) no plasma 

outside the beam-plasma channel ( 0ˆ =
o

j
n , j=e, i, and 

wb
rr < ). Assuming a positively charged ion 

beam (j=b) propagating through background plasma electrons and ions (j=e, i), the charge states 

are denoted by eZe
bb

+= , ee
e

!= , and eZe
ii

+= , and the plasma electrons are assumed to carry 

the neutralizing current ( 0!
e

" ), whereas the plasma ions are taken to be stationary ( 0=
i
! ). 

The conditions for charge neutralization and current neutralization, in Eq. (10) then give 
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!
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 In the analysis of the dispersion relation [79], it is useful to define  
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where 
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i
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2 $ jm j , 
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" j = 1#$ j
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, and 
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i
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2 $ jm j . Note from Eq. (15) that 
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ˆ " pj
i2 # j

2 $ %p

i2 & ' 2 %p

i2

j= b,e,i
( . Careful examination of the dispersion relation [79] for short-

wavelength radial perturbations shows that the growth rate !Im  of the unstable Weibel solution 

scales like 

! 

"
W
, where 
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for 0=
i
! . For 222 ˆˆ,ˆ i

pe

i

pi

i

pb !!! << , it follows that Eq. (16) is given to good approximation by  
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Note from Eq. (17) that 
W
!  involves the plasma frequencies of both the beam ions and the 

plasma ions. 

 The transcendental dispersion relation obtained from Eq. (11) has been solved 

numerically for the complex eigenfrequency !  and eigenfunction ( )rE
z

ˆ!  for a wide range of 

system parameters [79, 84]. Typical numerical results for the unstable slow-wave (Weibel) 

branch are illustrated in Figs. 6 and 7 for the choice of system parameters 
bw
rr 3= , 2.0=

b
! , 

1.0=
e

! , o

i

o

e

i

b

i

e

i

i
nnnnn ˆˆˆ2ˆˆ ==== , and 31=! crb

i

p  (Fig. 6) and 3=! crb
i

p  (Fig. 7). Here, it is 

also assumed that 
ie

!! == 0  in the region outside the beam-plasma channel, and that the 

plasma ions are stationary ( 0=
i

! ) inside the channel. Shown in Figs 6 and 7 are plots of the 

normalized growth rate 
W
!"Im  versus radial mode number n, and plots of the eigenfunction 

( )rE
z

ˆ!  versus 
w
rr  for mode number n=5. It is evident from Figs. 6 and 7 that 

W
! [Eq. (17)] 

gives a very good estimate of the maximum growth rate of the multispecies Weibel instability. 

 To summarize, the multispecies Weibel instability with characteristic growth rate 
W
!  can 

be particularly virulent for a sufficiently intense (high density) ion charge bunch propagating 

through background plasma that provides complete charge and current neutralization. On the 

other hand, the multispecies Weibel instability is not expected to have a deleterious effect on the 

beam quality provided 

                                                                         1<! pW" ,                                                            (18) 

where bpp VL=!  is the interaction time of the beam ions with background plasma, and pL is the 

length of the plasma column. Equivalently, 1<! pW"  gives 
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where use is made of Eq. (17), and the constant !  is defined in the nonrelativistic case by  
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For singly ionized Aluminum beam ions ( 1=
b
Z  and 13=

b
A ) in background Argon plasma 

( 18=
i
A ) and 21ˆˆ =

i

e

i

b
nn , we obtain from Eqs. (19) and (20) that Lp<1.27 m, 12.7 m, for 



 

 

312
10ˆ

!
= cmn

i

b
, 310
10

!
cm . Therefore the exponential length for the multispecies Weibel instability 

is moderately long, even for beam densities in the range 312310
1010

!!
! cmcm . 

B. Electrostatic Two-Stream Instability 

 The relative streaming of the beam ions through the background plasma components can 

also provide the free energy to drive the electrostatic two-stream instability with characteristic 

polarization 0!"# E$ and 0!B" . In this section, we make similar assumptions to those made 

at the beginning of Sec. III.A, including equilibrium charge and current neutralization [Eq. (10)], 

absence of an applied focusing field ( 0=f! ), and a perfectly conducting cylindrical wall 

located at radius 
w
rr = . Expressing the longitudinal electric field perturbations as !"! #$=E , 

we assume axisymmetric perturbations with 0=!! " . Perturbed quantities are expressed as 

! 

"# r,z,t( ) = " ˆ # r( )exp i k
z
z $%t( )[ ] , where 

z
k  is the axial wave number, and 0Im >!  corresponds 

to instability (temporal growth). Without presenting algebraic details [84, 85], the linearized 

cold-fluid equations lead to the electrostatic eigenvalue equation 
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 Here 

! 

" pj r( ) = 4#n j

0
r( )e j

2 $ jm j[ ]
1 2

 is the relativistic plasma frequency, constcV jzj == !  is the 

average axial velocity of component j (j=b,e,i), and 

! 

" j = 1#$ j

2( )
#1 2

 is the relativistic mass factor.  

 The electrostatic eigenvalue equation (22) can be solved numerically for the 

eigenfunction ( )r!" ˆ  and the complex eigenfrequency !  for a wide range of density profiles 

( )rn
j

0  (j=b,e,i). For present purposes, we specialize again to the choice of flat-top density profiles 

in Eqs. (12) and (13). In this case, the eigenfunction ( )r!" ˆ  can be determined analytically in the 

beam-plasma channel (
b
rr <!0 ), and in the region outside the beam (

wb
rrr !< ). Employing 

the appropriate boundary conditions at 
b
rr = , and enforcing ( ) 0ˆ ==

w
rr!" , some 

straightforward algebra leads to the electrostatic dispersion relation [78, 84] 
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Here, the geometric factor g0 is defined by  
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for 
wb
rr ! , where ( )xI

0
 and ( )xK

0
 are the modified Bessel functions of the first and second 

kinds, respectively, of order zero, and ( )xI
0
!  denotes 

! 

d dx( )I0 x( ). In addition, 

! 

ˆ " pj

i = 4# ˆ n j
i
e j

2 $ jm j( )
1 2

 (j=b,e,i) is the jth component plasma frequency inside the beam-plasma 

channel (
b
rr <!0 ), and 

! 

ˆ " pj

o = 4# ˆ n j
o
e j

2 $ jm j( )
1 2

 is the jth component plasma frequency outside 

the beam-plasma channel (
wb
rrr !< ). It is also assumed that the plasma ions are stationary 

( 0=
i

! ) inside the channel. The conditions for charge neutralization and current neutralization in 

the beam-plasma channel then reduce to Eq. (14). Finally, note from Eq. (23) that the geometric 

factor g0 exhibits a strong dependence on axial wave number kz, with  
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rk .                                                (24)   

 Because of the geometric factors g0 and 1- g0, the detailed properties of the two-stream 
instability calculated from Eq. (22) can differ substantially from the infinite beam-plasma results. 
However, several interesting features are evident. First, in the absence of plasma outside the beam-

plasma channel ( 0ˆ
2
=

o

pj
! ), the channel electrons undergo unstable two-stream interactions with 

both the beam ions and the channel plasma ions. Second, when there is plasma outside the beam-

plasma channel ( 0ˆ
2
!

o

pj
" ), the channel electrons can also undergo a strong unstable two-stream 

interaction with the plasma electrons outside the channel. Illustrative solutions to the dispersion 
relation (22) are presented in [78, 84]. For present purposes, we consider the case when there is no 

plasma outside the beam-plasma channel, i.e., o

i

o

e
nn ˆ0ˆ ==  for 

wb
rrr !< , and assume a cesium ion 

beam with 2.0=
b
!  and 1=

b
Z  propagating through background argon plasma with 1=

i
Z  and 

0=
i

! . The current neutralization condition in Eq. (14) then gives 1.0=
e

! . The dispersion 

relation (22) has two unstable branches corresponding to the interaction of the plasma electrons 

with the beam ions, and the interaction of the plasma electrons with the plasma ions. The 

unstable branch illustrated in Fig. 8 corresponds to the interaction of the plasma electrons with 



 

 

the plasma ions. Figure 8 shows plots of the normalized growth ( ) i

pe
!! ˆIm and real oscillations 

frequency ( ) i

pe
!! ˆRe versus 

bz
rk  for the case corresponding to 3ˆ =crb

i

pe!  and 31=
wb
rr . 

Note that the two-stream growth rate is strongly peaked as a function of 
bz
rk . For the choice of 

system parameters in Fig. 8, the value of 
zmz
kk =  at maximum growth rate satisfies 1

22
>>

bzm
rk . 

In this case, ( ) 21
0

!zmkg  in Eq. (22), and the maximum growth rate ( )
max

Im!  and value of 
zm
k  

in Fig. 8 are given to excellent approximation by the analytical estimates. 
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where 0=
i

!  is assumed. Equation (25) corresponds to the unstable plasma electron – plasma 

ion two-stream solution to Eq. (22). For the unstable plasma electron – beam ion solution, the 

estimates are similar to those in Eq. (25) with i

pi
!̂  replaced by i

pb!̂ , and 
ei

!! "  replaces by 

eb
!! " . 

 To summarize, for a cold ion beam propagating through a cold background plasma, the 

electrostatic two-stream instability can be an important collective interaction mechanism. Since 

the phase velocities of the most unstable modes are close to the beam velocity c
b
! and the 

plasma ion velocity c
i

! , modest axial velocity spreads in the beam ions and plasma ions can 

lead to a growth rate reduction. It is also expected that somewhat rounded density profiles, rather 

than flat-top profiles, or a radial shear in the axial velocity profile, would result in lower 

instability growth rates. An important nonlinear consequence of the two-stream instability is the 

rapid nonlinear heating of the plasma electrons on a time scale of a few times ( ) 1
max

Im
!

" . The 

time scale ( ) 1
max

Im
!

"  can be relatively fast for the electrostatic two-stream instability. The 

condition for negligible two-stream interaction over a length pL  of the plasma column can be 

expressed as ( ) 1Im
max

<bp VL! , or equivalently,  
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for the electron-ion two-stream growth rate estimate in Eq. (25). Here, use has been made of Eq. 

(14) to eliminate i

e

i

i
nn ˆˆ  in favor of i

e

i

b
nn ˆˆ . As a numerical example, we consider singly-ionized 

Aluminun beam ions ( 1=
b
Z  and 13=

b
A ) with 1.0=

b
!  propagating through background 

Argon plasma  ( 18=
i
A ) with 21ˆˆ =

i

e

i

b
nn , we obtain from Eqs. (26) and (27) that Lp< 31 cm, 

3.1cm, for 310
10ˆ

!
= cmn

i

b
, 312
10

!
cm , which correspond to relatively short distances. 

C. Dynamic Stabilization of Two-Stream Instability During Longitudinal Beam   

     Compression 

 Detailed properties of the electrostatic two-stream instability can change substantially 

during longitudinal compression of the beam pulse from those reported in Sec. III. B. In a recent 

calculation [81], the electrostatic two-stream instability for a cold, longitudinally-compressing 

intense ion beam propagating through a dense background plasma has been investigated both 

analytically and numerically using a simple one-dimensional model in which transverse spatial 

variations are neglected. The linear development of the instability and its saturation are examined 

from the point of view of wave dynamics, where the plasma waves are represented as quasi-

particles characterized by their position ( )tz , wavenumber ( )tk , and energy (or frequency) ( )t! . 

It is found that the longitudinal beam compression strongly modifies the space-time development 

of the instability. In particular, the dynamic compression of the beam pulse leads to a significant 

reduction in the growth rate of the two-stream instability compared to the case without an initial 

velocity tilt [81]. 

 To briefly describe the theoretical model [81], a semi-infinite ion beam with (see Fig. 9) 

sharp leading edge enters the region containing background plasma at time t=0 and z=0 with 

velocity 0

b
V  and density 0

b
n . The beam is uniformly compressing in the longitudinal direction as 

it propagates inside the plasma and reaches the maximum compression at time t=Tf  at the point 
0

bff VTZz ==  away from the beam entry point at z=0 into the chamber. The unperturbed beam 

propagation is illustrated in Fig. 9, where the beam phase space is plotted at different times 

during the compression. The transition from the solid to dashed lines in Fig. 9 identifies the end 



 

 

of the real beam pulse with finite initial length 0

b
L . The longitudinal ‘‘velocity tilt’’ 00

bb
VV! , is 

related to the compression distance Zf  and the initial beam pulse length 0

b
L  by 

                                                                 fbbb ZLVV 000
=! .                                                     (28) 

It is also assumed that the ion beam propagation in the background plasma is both charge 

neutralized and current neutralized, where the quasi-neutrality conditions are given by [81] 

                                                                   
ibbe
nnZn ˆ+= ,                                                                                                                                 

                                                                    
bbbee
nVZVn = .                                                         (29) 

In Eq. (29) nj and Vj denote the dynamically changing unperturbed density and flow velocity of 

the beam ions (j=b) and background plasma electrons (j=e), and constn
i
=ˆ  (independent of z and 

t) is the uniform density of the background plasma ions (assumed singly ionized and immobile). 

In Eq. (29), Zb is the charge state of the beam ions. 

 The analysis in [81] makes use of an elegant quasi-particle formalism, and assumes two 

small parameters  

                                                

! 

" #1 $ peTf( ) <<1 and 

! 

" # Z
b
n

b

0
ˆ n 

i
<<1                                    (30) 

It is found that the two-stream instability between the beam and plasma electrons develops and 

saturates everywhere in the background plasma region except close to the compression point z=Zf  

during the time interval when ibbf nnZTt ˆ1~1
0

>>! . It is convenient to introduce the gain 

function ( )tzG ,  defined by  

                                                             

! 

G z,t( ) = Im" z,t ( )dt 

z Vb

t

# .                                                 (31) 

Typical numerical results obtained from the linear dispersion relation and the quasi-particle 

dynamical equations are illustrated in Figs. 10 and 11 [81]. Figure 10 shows the normalized 

instability gain function ( ) !tzG ,  plotted as a function of distance fZz  at different times 

fTt =0.15 (1), 0.25 (2), 0.35 (3), 0.45 (4), 0.55 (5), 0.65 (6), and 0.75 (7) obtained numerically 

using the quasi-particle formalism, and compared with the analytical estimate (dashed curve) 

[81]. Figure 11 shows a comparison of the gain function in Eq. (31) with the gain function for a 

beam with zero tilt velocity, i.e., with the expression 
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In Fig. 11, we have chosen system parameters to be 30
10ˆ

!
="

ibb
nnZ#  and 

! 

" 2 = # pbTf( )
2

=1000. For 1
61
<<! , it is evident from Fig. 11 that the velocity tilt significantly 

reduces the growth rate compared to the case of a beam with zero velocity tilt [81]. 

D. Effects of Solenoidal Magnetic Field 

 As noted earlier, to achieve maximum compression, the space charge of the ion beam is 

neutralized by the propagation of the ion beam pulse through a dense background plasma [1-7, 

72-77]. In one approach, transverse compression is facilitated by using solenoidal focusing 

magnets. Recent studies of the beam’s charge and current neutralization in plasma with 

solenoidal magnetic field have shown that when the magnetic field is strong enough that 

pebce !"! ~ , the electron dynamics becomes significantly affected by the magnetic field. 

Specifically, if the condition pebce !"! ~  is satisfied, the magnetic field causes the plasma 

electrons to start rotating about the solenoid axis as they flow into the ion beam pulse to 

neutralize its charge and current [3]. Moreover, if pebce !"! > , low frequency helicon waves 

propagating nearly perpendicular to the beam propagation direction can now be resonantly 

excited by the beam [3], drastically changing the way current is being neutralized by the 

background plasma. Coupling to the helicon waves also modifies the electromagnetic Weibel 

instability discussed in Sec. III. A in the absence of applied focusing field. In a recent calculation 

[80], we have studied the low-frequency electromagnetic and electrostatic streaming instabilities 

of an intense ion beam propagating through background plasma along a solenoidal magnetic 

field. Because of the large ion mass, instabilities involving the ion cyclotron motion are very 

slow. Therefore, in the present analysis the effect of the solenoidal magnetic field on the beam 

ions and plasma ions is neglected, but its effect on the plasma electrons is included in the 

analysis.  

 For present purposes, we treat the beam-plasma medium as infinite in spatial extent. The 

externally-applied magnetic field 
z0
eB  is directed along the z-direction, and the wavenumber 

zzx
kk eek += !  of the field perturbation is taken to be in the (x, z) plane. Similar to previous 



 

 

sections, it is assumed that the background plasma electrons provide full charge and current 

neutralization, which requires the density of electrons to be 
bbiie
nZnZn ˆˆˆ += , and the electron 

drift velocity to be ,ˆˆ
ebbbe
nnVZV =  where j

n̂ and jẐ  are the number density and charge state of 

the background plasma ions (j=i) and the beam ions (j=b). For simplicity, the analysis [80] is 

carried out in a reference frame moving axially with the electrons. In this frame 
ebb
VVV != , 

0=
e
V  and 

ei
VV != . Neglecting, the cyclotron motion of the beam ions and plasma ions, the full 

cold-plasma dispersion relations for an ion beam propagating with velocity Vb along the 

magnetic field 
0
B

r
 is derived and analyzed in detail in [80]. 

 For present purposes, we consider the case of nearly transverse propagation and low-

frequency perturbations satisfying  
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where 222

z
kkk += ! , ( ) 212

ˆ4
eepe
men!" = , and cmeB

ece 0
=! . In addition, we consider 

perturbations with sufficiently short wavelength that 1
222
>>pekc ! . Making use of these 

approximations, the full dispersion relation derived in [80] can be approximated by  
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                           (34) 

where cVjj =!  (j=i,b). The terms proportional to 2

j
!  in Eq. (34) describe transverse 

electromagnetic contributions that drive the multispecies Weibel instability, whereas the 

remaining terms in Eq. (34) represent electrostatic two-stream contributions.  

 It is evident that even the simplified dispersion relation in Eq. (34) has a rich physics 

content that depends sensitively on the dimensionless parameter 222

cepeb !!" . For example, for 

0=
z
k , in the limit of a weak solenoidal magnetic field with 1

222
>>cepeb !!" , it follows that Eq. 

(34) can be approximated by  
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1= "
1

# 2
$ i
2# pi

2 + $ b
2# pb

2( ).                                                   (35) 



 

 

Note that Eq. (35) corresponds to the familiar multi-species Weibel instability (Sec. III. A) in the 

absence of applied focusing field. On the other hand, in the limit of a strong magnetic field with 

1
222
<<cepeb !!" , it follows that Eq. (34) can be approximated by 
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.            (36) 

Depending on the value of kk
z

=!cos , the dispersion relation (36) supports solutions ranging 

from the electrostatic modified two-stream instability between the plasma electrons and the beam 

ions or the plasma ions, to a streaming instability due to interaction of the ion beam with lower 

hybrid oscillations [80].  

 The growth rate of these instabilities have been obtained numerically by solving the full 

dispersion relation in [80], as well as the approximate dispersion relations in Eqs. (34) and (36). 

Typical results are illustrated in Figs. 12 and 13. Figure 12 shows the normalized two-stream 

growth rate 
pe

!!Im  plotted as a function of the normalized wavenumber pezck !  for 

20=! peck "  and 2=
cepe

!! . The dotted curve is the numerical solution of the full 

electromagnetic dispersion relation [80], and the solid curve is the solution of the (approximate) 

electrostatic dispersion relation in Eq. (36). Figure 13 shows the normalized growth rate of the 

multispecies Weibel instability, 22
Im pipb !!! + , plotted as a function of cepeb !!" . Note that 

the growth rate is relatively insensitive to the value of wavenumber k at these very short 

wavelengths. Figure 13 has been obtained by solving full electromagnetic dispersion relation 

[80] (dotted line), and by using the approximate dispersion relation in Eq. (36) (solid line) for the 

choice of system parameters 0=
z
k , 20=! peck " , 1.0== cV

bb
! , 

01.0=pepb !! , 1=pbpi !! , and 2.0ˆˆ =
ib
nn . 

 In summary, streaming instabilities of intense charged particle beams propagating along a 

solenidal magnetic field in a background plasma have been studied analytically and numerically 

[80]. It is found that the growth rates of the multispecies Weibel instability and electrostatic two-

stream instabilities are strongly affected by the strength of the solenoidal field as measured by 

the dimensionless parameter cepeb !!" . 

 



 

 

 

III. CONCLUSIONS 

 This paper presented a survey of collective processes and beam-plasma interactions 

affecting heavy ion beam propagation for ion-beam-driven high energy density physics and 

heavy ion fusion applications. The topics covered in Sec. II included a discussion of the 

sufficient condition for quiescent (stable) beam propagation over long distances (Sec. II.A); and 

the electrostatic Harris-type instability (Sec. II.B) and the electromagnetic Weibel-type 

instability (Sec. II.C) in strongly anisotropic, one-component nonneutral beams. In Sec. III, 

collective processes associated with the interaction of an intense ion beam pulse with a large-

volume, charge-neutralizing background plasma were described. To achieve the high focal spot 

intensities necessary for high energy density physics and heavy ion fusion applications, 

compressing the beam longitudinally and transversely in the presence of a dense charge-

neutralizing background plasma has many attractive features, particularly because the plasma 

electrons eliminate (or significantly reduce) the large, defocusing space-charge force of the ion 

beam pulse. The collective beam-plasma interaction processes summarized in Sec. III included: 

the multispecies electromagnetic Weibel instability (Sec. III.A); the electrostatic electron-ion 

two-stream instability (Sec. III.B); dynamic stabilization of the two-stream instability during 

longitudinal drift compression (Sec. III.C); and the effects of solenoidal magnetic field on 

collective beam-plasma instabilities (sec. III.D). Operating regimes to minimize the deleterious 

effects of collective instabilities have been identified.  
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FIGURE CAPTIONS 

 
 

Fig. 1. Plots of normalized growth rate ( ) f!!
max

Im versus normalized tune 
0

!! for 

0|| =!bb
TT and azimuthal mode number m=1 (dashed curve) [39]. Results have been obtained 

using the eigenmode code bEASt [37, 39]. The solid curve corresponds to the simple theoretical 

estimate in [37]. 

 

 

Fig. 2. The threshold value of longitudinal beam temperature  th

b
T||  for onset of the Harris 

instability normalized to the transverse temperature 
b

T!  is plotted versus the normalized tune 

depression 
0

!!  for two values of the azimuthal mode number, m=0 (solid line) and m=1 

(dashed line) [39]. The squares correspond to the effective longitudinal beam temperature 
2

|||| vmT
bb

!  obtained from simulations using the nonlinear 

! 

"f  code after the instability 

saturates. 

 



 

 

 

Fig. 3. Plot of the normalized maximum growth rate 

! 

Im"( )
max

" f

2
rb c( )  of the Weibel 

instability versus normalized tune 
0

!!  obtained from Eq. (8). 

 

 

Fig. 4. Plot of normalized maximum growth rate 

! 

Im"( )
max

" f

2
rb c( )  of the Weibel instability 

versus normalized tune 
0

!!  for 0|| =!bb
TT  and wall radius 

bw
rr 3=  [39]. 

 

 



 

 

 

 

Fig. 5. Schematics of the density profiles of the beam ions ( i

b
n̂ ) and the plasma ions and 

electrons inside ( i

i
n̂  and i

e
n̂ ) and outside  ( o

i
n̂  and o

e
n̂ ) the beam.  

 

 

 

Fig. 6. Plots of (a) Weibel instability growth rate 
W
!"Im  versus radial mode number n, and (b) 

eigenfunction ( )rE
z

ˆ!  versus 
w
rr  for n=5 [79]. System parameters are 3

wb
rr = , 2.0=

b
! , 

1.0=
e

! , o

i

o

e

i

b

i

e

i

i
nnnnn ˆˆˆ2ˆˆ ==== , 31=! crb

i

p . 

 



 

 

 

Fig. 7. Plots of (a) Weibel instability growth rate 
W
!"Im  versus radial mode number n, and (b) 

eigenfunction ( )rE
z

ˆ!  versus 
w
rr  for n=5 [79]. System parameters are 3

wb
rr = , 2.0=

b
! , 

1.0=
e

! , o

i

o

e

i

b

i

e

i

i
nnnnn ˆˆˆ2ˆˆ ==== , 3=! crb

i

p . 

 

 

 

Fig. 8. Plots of (a) 

! 

Im"( ) ˆ " pe
i  and (b) 

! 

Re"( ) ˆ " pe
i  versus 

bz
rk  calculated from the two-stream 

dispersion relation (22) for 3
wb
rr = , 2.0=

b
! , 1.0=

e
! , and 3ˆ =crb

i

pe!  in the absence of 

plasma outside the beam plasma channel [78, 84]. 

 



 

 

 

 

Fig. 9. Plot of ion beam phase space at different times during the compression. Line 1 

corresponds to t=0. 

 

 

 

Fig. 10. The normalized instability gain function 

! 

G z,t( ) "  is plotted as a function of distance 

fZz  at different times fTt =0.15 (1), 0.25 (2), 0.35 (3), 0.45 (4), 0.55 (5), 0.65 (6), and 0.75 

(7) obtained numerically (solid curve) and compared with the analytical estimate (dashed curve). 



 

 

 

 

Fig. 11. Comparison of the instability gain as a function of fZz  for a beam with velocity tilt 

(solid curve) and without velocity tilt (dashed curve) for 30
10ˆ

!
="

ibb
nnZ#  and 

! 

" 2 = # pbTf( )
2

=1000. 

 

 

Fig. 12. Normalized two-stream growth rate 
pe

!!Im  plotted as a function of normalized 

wavenumber pezck !  for 20=! peck "  and 1.0== cV
bb

! , 01.0=pepb !! , 1=pbpi !! , 

2=
cepe

!! , 2.0=cepeb !!" , and 2.0ˆˆ =
ib
nn . The dotted line is the solution of the full 

electromagnetic dispersion relation in [80], and the solid line is the solution of the approximate 

electrostatic dispersion relation in Eq. (36). 



 

 

 

 

Fig. 13. Normalized growth rate of the Weibel instability 22
Im pipb !!! +  plotted as a function 

of cepeb !!"  for 0=
z
k , 20=! peck " , 1.0== cV

bb
! , 01.0=pepb !! , and 2.0ˆˆ =

ib
nn . The 

dotted line is the solution of the full electromagnetic dispersion relation in [80], and the solid line 

is obtained from the approximate dispersion relation in Eq. (34).  

 

 


